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Abstract. In this paper a review of some well known generalizations of metric spaces is given.
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spaces, the so-called S-metric spaces, new fixed point results as well as theirs applications.
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1. Introduction

We start our paper by recalling the basic metric spaces.

Definition 1.1. Let X ̸= ∅ and d : X ×X → [0,∞) be such that:

M1) d(x, y) = 0 if and only if x = y,

M2) d(x, y) = d(y, x) for all x, y ∈ X,

M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Remark 1.1. If in Definition 1.1 instead of M3) we have d(x, z) ≤ max{d(x, y), d(y, z)} for all

x, y, z ∈ X the space is called ultra-metric space.

Very interesting paper in the sense of ultra-metric space is [14].

Theorem 1.1. Every metric space is Hausdorff.

Let (X1, d1), (X2, d2), . . . , (Xn, dn) be a metric spaces. Then we can define a product of metric

spaces in the following way:

X1 × · · · ×Xn = {(x1, . . . , xn), xi ∈ Xi, i = 1, 2, . . . , n}.

Now we can define a mapping D as follows:

D((x1, . . . , xn), (y1, . . . , yn)) = max
1≤i≤n

di(xi, yi),

for every (x1, . . . , xn), (y1, . . . , yn) ∈ X1 × · · · ×Xn.

Theorem 1.2. D is a metric on X1 ×X2 × · · · ×Xn.

Proof. We shall prove that all of the conditions M1 −M3 are satisfied.

M1) D((x1, . . . , xn), (y1, . . . , yn)) = 0 is equivalent to di(xi, yi) = 0 for every i = 1, . . . , n.

Since di is a metric we have that xi = yi for every i = 1, . . . , n, and so (x1, . . . , xn) = (y1, . . . , yn).
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M2) Symmetry follows from

D((x1, . . . , xn), (y1, . . . , yn)) = max
1≤i≤n

di(xi, yi) = max
1≤i≤n

di(yi, xi) = D((y1, . . . , yn), (x1, . . . , xn)).

M3)

D((x1, . . . , xn), (y1, . . . , yn)) = max
1≤i≤n

di(xi, yi) ≤ max
1≤i≤n

(di(xi, zi) + d(zi, yi))

≤ max
1≤i≤n

di(xi, zi) + max
1≤i≤n

d(zi, yi)

= D((x1, . . . , xn), (z1, . . . , zn)) +D((z1, . . . , zn), (y1, . . . , yn)).

Therefore, the product of metric spaces (X1, d1), (X2, d2), . . . , (Xn, dn) is a metric space (X1×
X2 × · · · ×Xn, D). �

We can define a product of metric spaces on one more way: If X = (x1, . . . , xn) and Y =

(y1, . . . , yn) and DS(X,Y ) =
∑n

i=1 |xi − yi| then (X × Y,DS) is a metric space too.

A first generalization of a metric spaces is given in the following definition.

Definition 1.2. Let X be a set. A mapping d : X ×X → [0,∞) is called a pseudodistance if

and only if for any x, y, z ∈ X, we have

m1) d(x, x) = 0,

m2) d(x, y) = d(y, x),

m3) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is called a pseudometric space.

Obviously every metric space is a pseudometric space. A pseudometric space is a generalized

metric space in which the distance between two distinct points can be zero. Pseudometric spaces

are not necessarily Hausdorff. The difference between pseudometrics and metrics is entirely

topological. That is, a pseudometric is a metric if and only if the topology it generates is T0;

(i.e. distinct points are topologically distinguishable). By using equivalence relations xy if d(x,

y) = 0 pseudometric space is a metric space.

Let (Xi, di), i = 1, 2, . . . , n be a pseudometric, and let X = (x1, . . . , xn), Y = (y1, . . . , yn) be

points in the product X1 ×X2 × · · · ×Xn. Then

Ds (X,Y ) =

n∑
i=1

di(xi, yi) and Dm (X,Y ) = max{di(xi, yi) : i = 1, 2, . . . , n}.

The next generalization is a quasi metric space.

Definition 1.3. Let X be a set. A mapping d : X × X → [0,∞) is called a quasi-distance if

and only if for any x, y, z ∈ X, we have

Q1) d(x, y) = 0 if and only if x = y,

Q2) d(x, y) ≤ d(x, z) + d(z, y).

In this case, the pair (X, d) is called a quasi-metric space.

In [19] the authors claim that every quasi-metric space is also a metric space. But in [10] an

example of a quasi-metric is given which is not a metric.

Example 1.1. Let X = R and d be defined by d(x, y) =
{ x− y, x ≥ y

1, x < y
.

Then d is a quasi-metric on X but d is not a metric on X.
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Let (X, d) be a quasi-metric space. Since d satisfies all of the properties of a metric space

except the triangle inequality, we can define a map d∗ : X ×X → [0,∞), such that d ∗ (x, x∗) =
inf

∑
d(xi, xi+1), where the infimum is taken over all sequences x = x0, ..., xn+1 = x∗ in X.

Therefore, d∗ satisfies the triangle inequality. But, the problem with this approach is that

d(x, x∗) could be 0 for different points x, x∗ and condition (M1) is not satisfied for (X, d∗).
If (X, d) is a quasi-metric space, then we do not necessarily have uniqueness of the limit of a

sequence.

Definition 1.4. [49] Let X be a set. A mapping d : X ×X → [0,∞) is called a semi-distance

if and only if for any x, y ∈ X, we have

Sd1) d(x, y) = 0 if and only if x = y;

Sd2) d(x, y) = d(y, x).

In this case, the pair (X, d) is called a semi-metric space.

Definition 1.5. [3, 6] Let X be a nonempty set and s ≥ 1 be a given real number. A function

d : X ×X → [0,∞) is a b-metric on X if, for all x, y, z ∈ X, the following conditions hold:

b1) d(x, y) = 0 if and only if x = y,

b2) d(x, y) = d(y, x),

b3) d(x, z) ≤ s[d(x, y) + d(y, z)] (b-triangular inequality).

In this case, the pair (X, d) is called a b−metric space (or metric type space).

If s = 1, then the triangle inequality in a metric space is satisfied. However it does not hold

true when s > 1. Thus the class of b−metric spaces is effectively larger than that of the ordinary

metric spaces. The following example illustrates the above remarks.

Example 1.2. [23] Let X = {−1, 0, 1}. Define d : X × X → R+ by d(x, y) = d(y, x) for all

x, y ∈ X, d(x, x) = 0, x ∈ X, d(−1, 0) = 3, d(−1, 1) = d(0, 1) = 1.

Then (X, d) is a b− metric space, but not a metric space since the triangle inequality is not

satisfied. Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that d(−1, 0) ≤ 3
2(d(−1, 1) + d(1, 0)), and therefore (X, d) is a b− metric

space with s = 3
2 .

On the other hand, we have the following example.

Example 1.3. [33] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p > 1 is a real

number. Then (X, ρ) is a b-metric with s = 2p−1.

Definition 1.6. [4]Let (X, d) be a b−metric space, x ∈ X and {xn} be a sequence in X. Then

(i) {xn} converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by lim
n→∞

xn = x or

xn → x (n→ ∞).

(ii) {xn} is a Cauchy sequence if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 1.2. [4]. In a b− metric space (X, d) the following assertions hold:

(i) A convergent sequence has a unique limit.

(ii) Each convergent sequence is Cauchy.

(iii) In general, a b-metric is not continuous.

Remark 1.3. For claim (iii), the reader is referred to see the Example 1.2. ([18]).

Theorem 1.3. [1] Let (X, d) be a b−metric space and suppose that {xn} and {yn} converge to

x, y ∈ X, respectively. Then we have
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1
s2
d(x, y) ≤ lim infn→∞ d(xn, yn) ≤ lim supn→∞ d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then lim
n→∞

d(xn, yn) = 0. Moreover, for each z ∈ X we have

1
sd(x, z) ≤ lim infn→∞ d(xn, z) ≤ lim supn→∞ d(xn, z) ≤ sd(x, z).

Many mathematicians have tried to extend the concept of metric space in which it is defined

distance of three or more points.

Gahler ([12], [13]) first defined 2−metric space as follows:

Definition 1.7. Let X be a non empty set. A real valued function d on X ×X ×X is said to

be a 2−metric on X if

21) given distinct elements x, y of X, there exists an element z of X such that d(x, y, z) ̸= 0,

22) d(x, y, z) = 0 when at least two of x, y, z are equal,

23) d(x, y, z) = d(x, z, y) = d(y, z, x) for all x, y, z ∈ X,

24) d(x, y, z) ≤ d(x, y, w) + d(x,w, z) + d(w, y, z) for all x, y, z, w ∈ X.

When d is a 2−metric on X, then the ordered pair (X, d) is called a 2− metric space.

We can interpret d(x, y, z) as the area of the triangle spanned by x, y and z.

Remark 1.4. If, in the definition of a 2− metric, condition 24) is deleted, then the function d

is called a semi-2− metric.

Remark 1.5. [11] A 2−metric is not a continuous function of its variables, whereas the or-

dinary metric is. Also a 2−metric space is not topologically equivalent to an ordinary metric.

Therefore there is no easy way to find relationship between results obtained in 2−metric spaces

and metric spaces. In particular, fixed point theorems on 2−metric spaces and metric spaces

may be incoherent. The following things are important in terms of a 2−metric space:

1. Every 2−metric is non-negative.

2. We may assume that every 2−metric space contains at least three distinct points.

After that Dhage in 1992 ([7]) gave another definition of space together with a function of 3−
variables.

Definition 1.8. Let X be a nonempty set, and let R denote the real numbers. A function

D : X3 → R satisfying the following axioms:

D1) D(x, y, z) ≥ 0 for all x, y, z ∈ X,

D2) D(x, y, z) = 0 if and only if x = y = z,

D3) D(x, y, z) = D(x, z, y) = . . . (symmetry in all three variables),

D4) D(x, y, z) ≤ D(x, y, a)+D(x, a, z)+D(a, y, z) for all x, y, z, a ∈ X. (rectangle inequality),

is called a generalized metric, or a D−metric on X.

D(x, y, z) may be interpreted as a measure of the perimeter of the triangle with vertices at x,

y and z.

If D(x, x, y) = D(x, y, y) for all x, y ∈ X then D is called a symmetric D−metric.

Let (X, d) be a metric space. Then Dhange gave as examples of D-metrics on X;

(d1) D(x, y, z) = 1
3(d(x, y) + d(y, z) + d(x, z)),

(d2) D(x, y, z) = max{d(x, y), d(y, z)d(x, z)}.
However, in [24], to satisfy the axioms of a D−metric it is not necessary that d satisfy the

triangle inequality, only that it be a semi-metric.

Unfortunately, most of the claims concerning the fundamental topological properties ofD−metric

spaces are incorrect (see [24]) This claim provided inspiration for the formation of more general

concept called a G−metric space ([25]).

Definition 1.9. Let X be a nonempty set. Suppose that G : X×X×X → [0,+∞) is a function

satisfying the following conditions:
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G1) G(x, y, z) = 0 if and only if x = y = z;

G2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y;

G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z;

G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables);

G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a G-metric on X and (X,G) is called a G-metric space.

They claim that these properties are satisfied when G(x, y, z) is the perimeter of the triangle

with vertices at x, y, and z in R2. If a is in the interior of the triangle then G5) is the best

possible.

Definition 1.10. A G−metric space is symmetric if G(x, x, y) = G(y, y, x).

It was observed that, in the symmetric case, many fixed point theorems on G-metric spaces

are particular cases of existing fixed point theorems in metric spaces.

If (X, d) is an ordinary metric space, then d1 and d2 defined above defines a G−metrics on

X, and for this to be so it is now necessary that d satisfy the triangle inequality. Moreover, it

can be done and vice versa.

Theorem 1.4. Every G− metric space defined a metric space in the following way:

dG(x, y) = G(x, x, y) +G(y, y, x), for all x, y ∈ X.

Remark 1.6. Let (X,G) be a G−metric space and let d(x, y) = G(x, x, y). Then d is a

quasi-metric. Symmetry does not necessarily hold, because from the properties of G metrics that

G(x, x, y) ≤ 2G(y, y, x), we can conclude that d(x, y), in the general case, is not a metric, only

a quasi-metric.

Proposition 1.1. Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly con-

tinuous in all three of its variables.

Let (Xi, Gi), i = 1, 2, . . . , n be a G-metric spaces and let X = Πn
i=1Xi. Then a natural

definitions for a G−metrics on the product space X would be

G1(x, y, z) = max
1≤i≤n

{Gi(xi, yi, zi)} and G2(x, y, z) =

n∑
i=1

Gi(xi, yi, zi).

However, unless all of the (Xi, Gi) are symmetric, G1 and G2 may fail to be G−metrics (see

Example 2 in [25]).

Recently, Shaban Sedghi et. al ([39]-[42]) modified the axioms for a D−metric space and

defined D∗-metric spaces and proved some basic properties and some fixed point and common

fixed point theorems in complete D∗-metric spaces.

Definition 1.11. Let X be a nonempty set. A generalized metric (or D∗-metric) on X is a

function, D∗ : X3 → [0,∞), that satisfies the following conditions for each x, y, z, a ∈ X:

(1) D∗(x, y, z) ≥ 0,

(2) D∗(x, y, z) = 0 if and only if x = y = z,

(3) D∗(x, y, z) = D∗(p(x, y, z)), (symmetry) where p is a permutation function,

(4) D∗(x, y, z) ≤ D∗(x, y, a) +D∗(a, z, z).

The pair (X,D∗) is called a generalized metric (or D∗-metric) space.
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Immediate examples of such a function are

(a) D∗(x, y, z) = max{d(x, y), d(y, z), d(z, x)},
(b) D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x).

Here, d is the ordinary metric on X.

2. Main results

By modifying D−metric and G−metric spaces S. Sedghi et al. ([35]-[38],[43], [44]) introduced

the concept of an S-metric space. Namely, theirs definition is following:

Definition 2.1. Let X be a nonempty set. An S−metric on X is a function S : X3 → [0,+∞)

that satisfies the following conditions for each x, y, z, a ∈ X :

S1) S (x, y, z) = 0 if and only if x = y = z.

S2) S (x, y, z) ≤ S (x, x, a) + S (y, y, a) + S (z, z, a) .

The pair (X,S) is called S−metric space.

Sedghi et al. [36] gave the following remarks.

It is easy to see that every D∗−metric is S−metric, but, in general, the converse is not true.

Example 2.1. Let X = Rn and define

(1) S (x, y, z) = ∥x+ y − 2z∥+ ∥y − z∥ .
(2) S (x, y, z) = d (x, y) + d (x, z) , where d is the ordinary metric on X.

(3) Let X = R2 and d be an ordinary metric on X. Put S (x, y, z) = d (x, y)+d (x, y)+d (y, z)

for all x, y, z ∈ R2; that is, S is the perimeter of the triangle given by x, y, z. Then S is an

S-metric on X.

(4) Let R be a real line. Then S (x, y, z) = |x− z|+ |y − z| for all x, y, z ∈ R is an S-metric

on R. This S−metric is called the usual S−metric on R. Furthermore, the usual S-metric space

R is complete (see the Definition 2.2 below).

(5) Let Y be a nonempty subset of R. Then S (x, y, z) = |x− z| + |y − z| for all x, y, z ∈ Y

is an S-metric on Y. Furthermore, if Y is a closed subset of the usual metric space R, then the

S-metric space Y is complete.

Definition 2.2. Let (X,S) be an S−metric space.

1. A sequence {xn} ⊂ X is said to S-converge to x ∈ X if S (xn, xn, x) → 0 as n → ∞; that

is, for each ε > 0, there exists an n0 ∈ N such that for all n ≥ n0, we have S (xn, xn, x) < ε. We

write xn → x for brevity.

2. A sequence {xn} ⊂ X is called an S-Cauchy sequence if S (xn, xn, xm) → 0 as n,m→ ∞;

that is, for each ε > 0, there exists an n0 ∈ N, such that for all n,m ≥ n0 we have S (xn, xn, x) <

ε.

3. The S-metric space (X,S) is said to be S-complete if every S-Cauchy sequence is an

S-convergent sequence.

In the sequel we formulate as well as prove several (known) important properties for the

S-metric spaces:

Lemma 2.1. Let (X,S) be an S-metric space. Then, for each x, y ∈ X it follows that S (x, x, y) =

S (y, y, x) .

Proof. Let x ̸= y. According to (S2) we have

S (x, x, y) ≤ 2S (x, x, x) + S (y, y, x) = 0 + S (y, y, x) = S (y, y, x) .
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Further, using the same idea, it follows that

S (y, y, x) ≤ 2S (y, y, y) + S (x, x, y) = 0 + S (x, x, y) = S (x, x, y) .

�

Lemma 2.2. Let (X,S) be an S- metric space. If there exist sequences {xn} and {yn} such

that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

Proof. According to (S2) we have

S (xn, xn, yn) ≤ 2S (xn, xn, x) + S (yn, yn, x)

≤ 2S (xn, xn, x) + 2S (yn, yn, y) + S (x, x, y) .

On the other hand, also using (S2), we obtain

S (x, x, y) ≤ 2S (x, x, xn) + S (y, y, xn)

≤ 2S (x, x, xn) + 2S (y, y, yn) + S (xn, xn, yn) .

Finally, we have

−2S (xn, xn, x)− 2S (yn, yn, y) ≤ S (xn, xn, yn)− S (x, x, y) ≤ 2S (xn, xn, x) + 2S (yn, yn, y) ,

or, equivalently,

|S (xn, xn, yn)− S (x, x, y)| ≤ 2 (S (xn, xn, x) + S (yn, yn, y)) → 0, when n→ ∞.

�

Lemma 2.3. Let (X,S) be an S- metric space. If there exist sequences {xn} in X such that,

for every n ∈ N

S(xn, xn, xn+1) ≤ lS(xn−1, xn−1, xn)

for every 0 < l < 1, then the sequence {xn} is a Cauchy sequence.

Proof. For every n ∈ N and xn, xn+1 ∈ X, we have

S(xn, xn, xn+1) ≤ lS(xn−1, xn−1, xn)

≤ l2S(xn−2, xn−2, xn−1)

...

≤ lnS(x0, x0, x1).

Hence for every m > n and 0 < l < 1 we have, by the triangle inequality,

S(xn, xn, xm) ≤ 2
m−2∑
i=n

S(xi, xi, xi+1) + S(xm−1, xm−1, xm)

≤ 2[ln + ln+1 + · · ·+ lm−1]S(x0, x0, x1)

≤ 2ln

1− l
S(x0, x0, x1) −→ 0.

Therefore, for each ϵ > 0, there exits n0 ∈ N, such that, for each n,m ≥ n0

S(xn, xn, xm) < ϵ.

These show that {xn} is Cauchy sequence in X. �



10 TWMS J. PURE APPL. MATH., V.9, N.1, 2018

Proposition 2.1. Let (X,S) be an S-metric space. Then
(
X, d, 32

)
is a b-metric space, where

d (x, y) = S (x, x, y) ,

for all x, y ∈ X.

Proof. Since S (x, x, y) = S (y, y, x) it follows that d (x, y) = d (y, x) . Further, d (x, y) ≥ 0 as

well as d (x, y) = 0 if and only if x = y. We will prove that

d (x, y) ≤ 3

2
(d (x, y) + d (y, z)) .

Indeed, according to (S2) we have (for each x, y, z ∈ X)

d (x, y) = S (x, x, y) ≤ 2S (x, x, z) + S (y, y, z)

= 2d (x, z) + d (y, z) ,

and

d (x, y) = S (y, y, x) ≤ 2S (y, y, z) + S (x, x, z)

= 2d (y, z) + d (x, z) .

It follows that d (x, y) ≤ 3
2 [d (x, z) + d (y, z)], that is d is one b-metric on the nonempty set

X. �

Corollary 2.1. Let (X,S) be an S-metric space. Then the b-metric d defined in Proposition

2.1 is a continuous function in both variables.

Proposition 2.2. Let (X,S) be an S-metric space. If the sequence {xn} in X is S-convergent

to x, then {xn} is an S-Cauchy sequence.

Proof. According to (S2) we have

S (xn, xn, xm) ≤ 2S (xn, xn, x) + S (xm, xm, x) → 0, when both n,m→ ∞.

�

Proposition 2.3. Let (X,S) be an S-metric space. If the sequence {xn} in X be S-convergent

to x, then x is unique.

Proof. Let the sequence {xn} S-converges to some y ∈ X, y ̸= x. Then, according to the (S2),

we have

S (x, x, y) ≤ 2S (x, x, xn) + S (y, y, xn)

= 2S (xn, xn, x) + S (xn, xn, y)

→ 0 + 0 = 0, when n→ ∞.

Hence, from (S1) follows that x = y, a contradiction. �

Definition 2.3. Let (X,S) be an S-metric space. For r > 0 and x ∈ X we define open ball

BS (x, r) and the closed ball BS [x, r] , with center x and radius r, as follows respectively:

BS (x, r) = {y ∈ X : S (y, y, x) < r} ,
BS [x, r] = {y ∈ X : S (y, y, x) ≤ r} .

Definition 2.4. Let (X,S) be an S-metric space. Let τ be the set of all A ⊂ X with x ∈ A if

and only if there exists an r > 0 such that BS (x, r) ⊂ A. Then τ is a topology on X (induced

by the S-metric S).
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Proposition 2.4. Let (X,S) be an S-metric space. If r > 0 and x ∈ X, then the ball BS (x, r)

is a τ−open subset of X.

Proof. Let y ∈ BS (x, r) . Hence S (y, y, x) < r. If we set δ = S (x, x, y) and r′ = r−δ
2 then we

prove that BS (y, r′) ⊆ BS (x, r) . Let z ∈ BS (y, r′) . Then S (z, z, y) < r′. Using (S2) we have

S (z, z, x) ≤ 2S (z, z, y) + S (x, x, y) < 2r′ + δ = r.

Hence BS (y, r′) ⊆ BS (x, r) . This means that the ball BS (x, r) is an τ−open subset of X. �

Lemma 2.4. Let (X,S) be an S−metric space and let {xn} be a sequence in it such that

lim
n→∞

S (xn+1, xn+1, xn) = 0.

If {xn} is not an S-Cauchy sequence, then there exist an ε > 0 and two sequences {nk} and

{mk} of positive integers such that the following sequences tend to ε when k → ∞ :

{S (xmk
, xmk

, xnk
)} , {S (xmk

, xmk
, xnk+1)} , {S (xmk+1, xmk+1, xnk+1)} ,

{S (xmk−1, xmk−1, xnk
)} , {S (xmk−1, xmk−1, xnk+1)} , ....

Proof. If {xn} is not an S-Cauchy sequence, then there exist an ε > 0 and two sequences {nk}
and {mk} of positive integers such that

nk > mk > k, S (xmk
, xmk

, xnk−1) < ε, S (xmk
, xmk

, xnk
) ≥ ε for all k ∈ N.

From Lemma 2.1 and (S2),

ε ≤ S (xmk
, xmk

, xnk
) = S (xnk

, xnk
, xmk

) ≤ 2S (xnk
, xnk

, xnk−1) + S (xmk
, xmk

, xnk−1)

< 2S (xnk
, xnk

, xnk−1) + ε→ 0 + ε = ε

when k → ∞. Hence, S (xmk
, xmk

, xnk
) → ε as k → ∞.

Similarly,

S (xmk
, xmk

, xnk
) = S (xnk

, xnk
, xmk

) ≤ 2S (xnk
, xnk

, xnk+1) + S (xmk
, xmk

, xnk+1)

= S (xmk
, xmk

, xnk+1) + 2S (xnk+1, xnk+1, xnk
) ,

as well as

S (xmk
, xmk

, xnk+1) = S (xnk+1, xnk+1, xmk
)

≤ 2S (xnk+1, xnk+1, xnk
) + S (xmk

, xmk
, xnk

) .

Hence S (xmk
, xmk

, xnk+1) → ε as k → ∞.

Further, we have

S (xmk
, xmk

, xnk+1) ≤ 2S (xmk
, xmk

, xmk+1) + S (xnk+1, xnk+1, xmk+1)

and

S (xmk+1, xmk+1, xnk+1) ≤ 2S (xmk+1, xmk+1, xmk
) + S (xnk+1, xnk+1, xmk

)

= 2S (xmk+1, xmk+1, xmk
) + S (xmk

, xmk
, xnk+1)

from which it follows that S (xmk+1, xmk+1, xnk+1) → ε as k → ∞.

Similarly, we further obtain

S (xmk
, xmk

, xnk+1) ≤ 2S (xmk
, xmk

, xmk−1) + S (xmk−1, xmk−1, xnk
)

S (xmk−1, xmk−1, xnk
) ≤ 2S (xmk−1, xmk−1, xmk

) + S (xmk
, xmk

, xnk
) ,

that is., S (xmk−1, xmk−1, xnk
) → ε as k → ∞.
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Finally, we have

S (xmk−1, xmk−1, xnk+1) ≤ 2S (xmk−1, xmk−1, xmk
) + S (xnk+1, xnk+1, xmk

)

= 2S (xmk−1, xmk−1, xmk
) + S (xmk

, xmk
, xnk+1)

and

S (xmk
, xmk

, xnk+1) ≤ 2S (xmk
, xmk

, xmk−1) + S (xnk+1, xnk+1, xmk−1)

= 2S (xmk
, xmk

, xmk−1) + S (xmk−1, xmk−1, xnk+1)

that is., S (xmk−1, xmk−1, xnk+1) → ε as k → ∞. �

Analogous to metric spaces, the notion of S−compatible pair of self mappings (f, g) has been

introduced in the framework of an S−metric spaces in the following way.

Definition 2.5. [47] Let (X,S) be an S−metric space. A pair {f, g} is said to be S-compatible if

and only if limn→∞ S (fgxn, gfxn) = 0, whenever {xn} is a sequence in X such that limn→∞ fxn =

limn→∞ gxn = t for some t ∈ X.

Example 2.2. [47] Let X = [0, 1] be endowed with the S−metric S (x, y, z) = |x− z|+ |y − z| .
Define f, g,R and T on X by

f (x) =
(x
2

)8
, g (x) =

(x
2

)4
, R (x) =

(x
2

)2
and T (x) =

x

2
.

Then the pairs {f,R} and {g, T} are S-compatible, but they are not commuting.

Remark 2.1. It is clear that a pair {f, g} is S-compatible if and only if it is d− compatible,

where d is the b− metric introduced in Proposition 2.1.

The following proposition is a nice generalization of the corresponding result from metric

spaces in the framework of S−metric spaces. Our proof is different from [45].

Proposition 2.5. [45] Let (X,S) be an S-metric space. If there exists two sequences {xn}
and {yn} such that limn→∞ S (xn, xn, yn) = 0 whenever {xn} is a sequence in X such that

limn→∞ xn = t for some t ∈ X, then limn→∞ yn = t.

Proof. For the proof we use the b-metric introduced in 2.1. Therefore we have

2

3
d (yn, t) ≤ d (yn, xn) + d (xn, t)

= S (xn, xn, yn) + S (xn, xn, t)

→ 0 + 0 = 0.

The result now follows since d (yn, t) = S (yn, yn, t) . �

If (X,S) is an S−metric space then X×X can also be endowed also with some new S−metric.

Namely, we have the following result.

Proposition 2.6. Let (X,S) be an S− metric space. Define S+ : X2 ×X2 ×X2 → [0,∞) and

Smax : X2 ×X2 ×X2 → [0,∞) as

S+ ((x, y) , (u, v) , (p, q)) = S (x, u, p) + S (y, v, q) and

Smax ((x, y) , (u, v) , (p, q)) = max {S (x, u, p) , S (y, v, q)} .

Then,
(
X2, S+

)
and

(
X2, Smax

)
are two new S−metric spaces.
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Proof. Let S+ ((x, y) , (u, v) , (p, q)) = 0 ⇔ S (x, u, p) = 0 and S (y, v, q) = 0 ⇔ x = u = p and

y = v = q ⇔ (x, y) = (u, v) = (p, q) . Hence (S+1) holds. We will further prove that

S+ ((x, y) , (u, v) , (p, q))

≤ S+ ((x, y) , (x, y) , (a, b)) + S+ ((u, v) , (u, v) , (a, b)) + S+ ((p, q) , (p, q) , (a, b)) ,

for all (x, y) , (u, v) , (p, q) , (a, b) ∈ X2.

Indeed, we have that

S+ ((x, y) , (u, v) , (p, q)) = S (x, u, p) + S (y, v, q)

≤ [S (x, x, a) + S (u, u, a) + S (p, p, a)] + [S (y, y, b) + S (v, v, b) + S (q, q, b)]

= [S (x, x, a) + S (y, y, b)] + [S (u, u, a) + S (v, v, b)] + [S (p, p, a) + S (q, q, b)]

= S+ ((x, y) , (x, y) , (a, b)) + S+ ((u, v) , (u, v) , (a, b)) + S+ ((p, q) , (p, q) , (a, b)) .

That is, (S+2) holds. This means that
(
X2, S+

)
is a new S−metric space if (X,S) is one.

For the function Smax we have the following. Define Smax ((x, y) , (u, v) , (p, q)) = 0. This is

equivalent to S (x, u, p) = 0 and S (y, v, q) = 0; that is, (x, y) = (u, v) = (p, q) . Hence, (Smax1)

holds. Further, we obtain

Smax ((x, y) , (u, v) , (p, q)) = max {S (x, u, p) , S (y, v, q)}
≤ max {S (x, x, a) + S (u, u, a) + S (p, p, a) , S (y, y, b) + S (v, v, b) + S (q, q, b)}
≤ max {S (x, x, a) , S (y, y, b)}+max {S (u, u, a) , S (v, v, b)}
+ max {S (p, p, a) , S (q, q, b)}
= Smax ((x, y) , (x, y) , (a, b)) + Smax ((u, v) , (u, v) , (a, b)) + Smax ((p, q) , (p, q) , (a, b)) ,

that is, (Smax2) holds.

The proof of Proposition 2.6 is complete finished. �

For more information about S-metric space, we refer the reader to ([5]-[9], [15], [16], [22], [26],

[27], [31], [32], [34], [38], [46]-[48]).

In this section we use the concept of simulation functions (see [2], [17], [20], [21], [28]- [30]) to

present a very general kind of contraction on S−metric spaces, and we prove related existence

and uniqueness coincidence point results.

Definition 2.6. A simulation function is a mapping ζ : [0,∞) × [0,∞) → R satisfying the

following conditions:

(ζ1) ζ (0, 0) = 0;

(ζ2) ζ (t, s) < s− t for all t, s > 0;

(ζ2) If {tn} , {sn} are sequences in (0,∞) such that limn→∞ tn = limn→∞ sn > 0, then

lim supn→∞ ζ (tn, sn) < 0.

For more details see [20].

Let Z be the family of all simulation functions ζ : [0,∞)× [0,∞) → R.
Next we give some examples of the simulation function.

Example 2.3. Let ζi : [0,∞)× [0,∞) → R, i = 1, 2, 3, 4 be defined by

(i) ζ1 (t, s) = ψ (s)−ϕ (t) for all t, s ∈ [0,∞), where ϕ, ψ : [0,∞) → [0,∞) are two continuous

functions such that ψ (t) = ϕ (t) = 0 if and only if t = 0 and ψ (t) < t ≤ ϕ (t) for all t > 0.

(ii) ζ2 (t, s) = s− f(t,s)
g(t,s) · t for all t, s ∈ [0,∞), where f, g : [0,∞) → [0,∞) are two continuous

functions with respect to each variable such that f (t, s) > g (t, s) for all t, s > 0.
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(iii) ζ3 (t, s) = s − φ (s) − t for all t, s ∈ [0,∞), where φ : [0,∞) → [0,∞) is a continuous

function such that φ (t) = 0 if and only if t = 0.

(iv) ζ4 (t, s) =
s

s+1 − t for all t, s ∈ [0,∞).

Then ζi for i = 1, 2, 3, 4 are simulation functions.

Definition 2.7. Let (X,S) be an S−metric space and let f, g : X → X be self-mappings. We

say that f is a (Z, g)−contraction if there exists a ζ ∈ Z such that

ζ (S (fx, fx, fy) , S (gx, gx, gy)) ≥ 0 for all x, y ∈ X such that gx ̸= gy. (1)

Remark 2.2. If f is (Z, g)− contraction with respect to some ζ ∈ Z, then

S (fx, fx, fy) < S (gx, gx, gy) for all x, y ∈ X such that gx ̸= gy, (2)

To prove (2) assume that gx ̸= gy. Then S (gx, gx, gy) > 0. If fx = fy, then S (fx, fx, fy) =

0 < S (gx, gx, gy) . If fx ̸= fy, then S (fx, fx, fy) > 0, and applying (ζ2) and (1), we have that

0 ≤ ζ (S (fx, fx, fy) , S (gx, gx, gy)) < S (gx, gx, gy)− S (fx, fx, fy) ,

and (2) holds.

Now we prove that coincidence points of (Z, g)−contractions have the same image by g and

f.

Proposition 2.7. If f is a (Z, g)−contraction in an S-metric space (X,S) and x, y ∈ X are

coincidence points of f and g, then fx = gx = gy = fy.

Proof. Suppose that gx ̸= gy. Then S (gx, gx, gy) > 0. By (1), it follows that

0 ≤ ζ (S (fx, fx, fy) , S (gx, gx, gy)) = ζ (S (gx, gx, gy) , S (gx, gx, gy)) < 0

(by (ζ2)), a contradiction. �

Definition 2.8. Given two self-mappings f, g : X → X and a sequence {xn}n≥0 ⊆ X, we say

that {xn} is a Picard-Jungck sequence of the pair (f, g) (based on x0) if fxn = gxn+1 for all

n ≥ 0. We say that X satisfies the CLR(f,g)−property at a point x0 ∈ X, if there exists on X a

Picard-Jungck sequence of (f, g)based on x0.

Two examples:

1. It is well known that, if f and g are two self-mappings such that f (X) ⊆ g (X) , then

there exists a Picard-Jungck sequence of (f, g) based on any point x0 ∈ X. In order words, if

f (X) ⊆ g (X) , then X satisfies the CLR(f,g)−property at each point x ∈ X. The converse it is

not true in general.

2. If g = IX is the identity mapping on X, then there exists a unique Picard-Jungck sequence

of (f, g) based at each x0 ∈ X, which is given by xn+1 = fxn for all n ≥ 0. Therefore, X satisfies

the CLR(f,g)−property at every point.

Definition 2.9. Let f, g be mappings on a S-metric space (X,S) . We say that f and g are

S-compatible if limn→∞ S (fgxn, gfxn) = 0 for all sequence {xn} ⊆ X such that the sequence

{gxn} and {fxn} are S-convergent and have the same S−limit.

Now, we can prove the first new results in this framework.

Theorem 2.1. Let f be a (Z, g)−contraction in a S-metric space (X,S) and suppose that there

exists a Picard-Jungck sequence {xn} of (f, g) . Also, suppose that at least one of the following

conditions holds.

(a) g (X) or f (X) is S-complete.
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(b) (X,S) is S-complete and f and g are S -continuous and S−compatible.

(c) (X,S) is a S-complete and f and g are S− continuous and commuting.

Then f and g have a coincidence point. Furthermore, either the sequence {gxn} contains a

coincidence point of f and g or, at least one of the following properties holds.

1. In case (a), the sequence {gxn} converges to u ∈ g (X) and any point v ∈ X such that

u = gv is a coincidence point of f and g.

2. In cases (b) and (c) the sequence {gxn} converges to a coincidence point of f and g.

3. Conclusion

The paper describes S-metric spaces and simulation functions in the context of S-metric

spaces.
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[21] Liu, X.-L., Ansari, A.H., Chandok, S., Radenović, S., (2018), On some results in metric spaces using auxiliary

simulation functions via new functions, J. Comput. Anal. Appl., 24(6), pp.1103-1114.

[22] Mlaiki, N. M., (2015), α− ψ− contractive mapping on S-metri cspace, Math. Sci. Lett., 4(1), pp.9-12.

[23] Mohanta, S. K., (2015), Some fixed point theorems using wt-distance in b-metric spaces, Fasciculi Math., 54,

pp. 125-140.

[24] Mustafa, Z., Sims, B., (2003), Some remarks concerning D-metric spaces, Proceedings of the International

Conferences on Fixed Point Theory and Applications, Valencia (Spain), pp.189-198.

[25] Mustafa, Z., Sims, B., (2006), ”A new approach to generalized metric spaces,” Journal of Nonlinear and

Convex Analysis, 7(2), pp.289-297.

[26] Ozgur, N. Y., Tas, N., (2017), Some fixed point theorems on S−metric spaces, Matematički Vesnik, 69(1),
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